' ORBITAL MECHANICS
w
Developing the Equations of the Orbit

This chapter is about how earth orbit is achieved, the laws that describe the motion of an
object orbiting another body, how satellites maneuver in space, and the determination of
the look angle to a satellite from the earth using ephemeris data that describe the orbital
trajectory of the satellite.

To achieve a stable orbit around the earth, a spacecraft must first be beyond the bulk
of the earth’s atmosphere, i.e., in what is popularly called space. There are many defini-
tions of space. U.S. astronauts are awarded their “space wings” if they fly at an altitude
that exceeds 50 miles (~80 km); some international treaties hold that the space frontier
above a given country begins at a height of 100 miles (~160 km). Below 100 miles, per-
mission must be sought to over-fly any portion of the country in question. On reentry, at-
mospheric drag starts to be felt at a height of about 400,000 ft (~76 miles = 122 km).
Most satellites, for any mission of more than a few months, are placed into orbits of at
least 250 miles (=400 km) above the earth. Even at this height, atmospheric drag is sig-
nificant. As an example, the initial payload elements of the International Space Station
(ISS) were injected into orbit at an altitude of 397 km when the shuttle mission left those
modules on 9 June 1999. By the end of 1999, the orbital height had decayed to about
360 km, necessitating a maneuver to raise the orbit. Without onboard thrusters and suffi-
cient orbital maneuvering fuel, the ISS would not last more than a few years at most in
such a low orbit. To appreciate the basic laws that govern celestial mechanics, we will be-
gin first with the fundamental Newtonian equations that describe the motion of a body.
We will then give some coordinate axes within which the orbit of the satellite can be set
and determine the various forces on the earth satellite.

Newton'’s laws of motion can be encapsulated into four equations:

s = ut + (3)at* (2.1a)
v} = u® + 2at (2.1b)
v=u-+at (2.1c)
P = ma (2.1d)

where s is the distance traveled from time ¢ = 0; u is the initial velocity of the object at
time # = 0 and v the final velocity of the object at time f; a is the acceleration of the ob-
ject; P is the force acting on the object; and m is the mass of the object. Note that the ac-
celeration can be positive or negative, depending on the direction it is acting with respect
to the velocity vector. Of these four equations, it is the last one that helps us understand
the motion of a satellite in a stable orbit (neglecting any drag or other perturbing forces).
Put into words, Eq. (2.1d) states that the force acting on a body is equal to the mass of
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with height above the earth's surface. The acceleration, a, due to gravity at a distance r
from the center of the earth is'

a = u/r’ km/s’ (2.1)

where the constant u is the product of the universal gravitational constant G and the mass
of the earth M,.

“l‘hc‘ product GMy, is called Kepler's constant and has the value 3.986004418 x
10" kmYs". The universal gravitational constant is G = 6.672 % 10 "' Nm’/kg’ or 6.672 x
10 % km'/kg s” in the older units. Since force = mass X acceleration, the centripetal
force acting on the satellite, Fi\, is given by

Fin = m X (u/r?) (2.2a)
=m X (GMy/r?) (2.2b)

In a similar fashion, the centrifugal acceleration is given by'
a=v¥r (2.3)
which will give the centrifugal force, Fgy, as
Four = m X (v¥/r) (2.4)
If the forces on the satellite are balanced, Fiy = Foy and, using Eqs. (2.2a) and (2.4),
m X w/r* =m X v¥/r
hence the velocity v of a satellite in a circular orbit is given by
v = (u/r)'"? (2.5)

If the orbit is circular, the distance traveled by a satellite in one orbit around a planet is
27rr, where r is the radius of the orbit from the satellite to the center of the planet. Since
distance divided by velocity equals time to travel that distance, the period of the satellite’s
orbit, T, will be

T = 2mr)/v = ur)/[(uw/r)?)
Giving
T = 2mr?)/(u'?) (2.6)

Table 2.1 gives the velocity, v, and orbital period, T, for four satellite systems that
occupy typical LEO, MEO, and GEO orbits around the earth. In each case, the orbits are

TABLE 2.1 Orbital Velocity, Height, and Period
of Four Satellite Systems

Orbital height Orbital velocity Orbital period
Satellite system (km) {km/s) (h min s)
Intelsat (GEO) 35,786.03 3.0747 23 56 4.1
New-ICO (MEO) 10,265 4,8954 5 55 484
Skybridge (LEO) 1,469 71.1272 1 66 17.8
Iridium (LEO) 780 7.4624 1 40 27.0

Mean earth radius is 6378.137 km and GEO radius from the center of the
sarth is 42,164,17 km.
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F = mj—j: (2.8
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This is a second-order linear differential equation'and its solution will involve e
undetermined constants called the orbital elements. The orbit described by these orbitd
elements can be shown to lie in a plane and to have a constant angular momentum. Thf
solution to Eq. (2.10) is difficult since the second derivative of r involves the second df
rivative of the unit vector . To remove this dependence, a different set of coordinates ¢



FIGURE 2.3 The orbital plane coor-
dinate system. In this coordinate sys-
tem, the orbital plane of the satellite
is used as the reference plane. The
orthogonal axes x, and y, lie in the
orbital plane. The third axis, z, is
perpendicular to the orbital plane.
The geographical z-axis of the earth
(which passes through the true North
Pole and the center of the earth, c)
does not lie in the same direction as
the 2z, axis except for satellite orbits
that are exactly in the plane of the
geographical equator.

be chosen to describe the location of the satellite such that the unit vectors in the three

axes are constant. This coordinate system uses the plane of the satellite’s orbit as the ref-
erence plane. This is shown in Figure 2.3.

Expressing Eq. (2.10) in terms of the new coordinate axes Xg Yo, and z, gives

dzxo) (d2YO) I-‘v(xofo T+ )’05\’0)
Yol —=- | + ¥ + = (X 2.11
%Lw et )" @+ R “th

Equation (2.11) is easier to solve if it is expressed in a polar coordinate system rather than
a Cartesian coordinate system. The polar coordinate system is shown in Figure 2.4.
With the polar coordinate system shown in Figure 2.4 and using the transformations

Xy = rycosdy (2.12a)
Yo = o Sindyg (2.12b)
Xp = Focoscy — ﬁao sin ¢, (2.12¢)
$o = docosdy + 7o sindy (2.12d)
and equating the vector components of ro and ¢, in turn in Eq. (2.11) yields
2
d—"‘:g B ro(%) = -£ (2.13)
dt* dt e

FIGURE 2.4 Polar coordinate system in the plane
of the satellite’s orbit. The plane of the orbit c_oin-
cides with the plane of the paper. The axis 2 is
straight out of the paper from the center of trfe
earth, and is normal to the plane of the satellite’s
orbit. The satellite’s position is described in terms
of the radius from the center of the earth r and the
angle this radius makes with the x; axis, ¢o-
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Using standard mathematical procedures, we can develop an equation for the g diy '-_':ﬁ

of the satellite’s orbit, ro, namely

1 + ecos(dy — 6y) (2_15).;

Where 6, is a constant and ¢ is the eccentricity of an ellipse whose semilatus rectum Bis
given by

gy =

p = (F)/p Q.1

and h is magnitude of the orbital angular momentum of the satellite. That the equation ¢
the orbit is an ellipse is Kepler’s first law of planetary motion.

Kepler's Three Laws of Planetary Motion

Johannes Kepler (1571-1630) was a German astronomer and scientist who developed his
three laws of planetary motion by careful observations of the behavior of the planets in
the solar system over many years, with help from some detailed planetary observations
by the Hungarian astronomer Tycho Brahe. Kepler’s three laws are

1. The orbit of any smaller body about a larger body is always an ellipse, with the cen-
ter of.mass of the larger body as one of the two foci.

2. The orbit of the smaller body sweeps out equal areas in equal time (see Figure 2.5).

FIGURE 2.5 lllustration of Kepler's second law of planetary motion. A satellite is in orbit
about the planet earth, E. The orbit is an ellipse with a relatively high eccentricity, that is.
it is far from being circular. The figure shows two shaded portions of the elliptical plane in
which the orbit moves, one is close to the earth and encloses the perigee while the other
is far from the earth and encloses the apogee. The perigee is the point of closest ap- ‘
proach to the earth while the apogee is the point in the orbit that is furthest from the i
earth. While close to perigee, the satellite moves in the orbit between times t; and t; and f ]
sweeps out an area denoted by A,,. While close to apogee, the satellite moves in the Ofb"

batween times t, and t, and sweeps out an area denoted by Ag,. lf t, = t, = t; — t, then
= Ay
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Kepler's laws were subsequently confirmed, about 50
years later, by Isaac Newton, who developed a math-
ematical model for the motion of the planets. New-
ton was one of the first people to make use of differ-
ential calculus, and with his understanding of gravity,
was able to describe the motion of planets from a
mathematical model based on his laws of motion and

the concept of gravitational attraction. The work was
published in the Philosophiae Naturalis Principia
Mathematica in 1687. At that time, Latin was the in-
ternational language of formally educated people,
much in the way English has become the international
language of e-mail and business today, so Newton's
Principia was written in Latin.

3. The square of the period of revolution of the smaller body about the larger body
eqn_jals a constant multiplied by the third power of the semimajor axis of the orbital
ell‘xpse. That is, 7> = (47%a*)/u where T is the orbital period, a is the semimajor
axis of the orbital ellipse, and u is Kepler’s constant. If the orbit is circular, then a
becomes distance 7, defined as before, and we have Eq. (2.6).

Describing the orbit of a satellite enables us to develop Kepler’s second two laws.

Describing the Orbit of a Satellite

The quantity 6, in Eq. (2.15) serves to orient the ellipse with respect to the orbital plane
axes xy and y,. Now that we know that the orbit is an ellipse, we can always choose x,
and y, so that 6, is zero. We will assume that this has been done for the rest of this
discussion. This now gives the equation of the orbit as

T5a e
+ e cos ¢,

£ (2.17)

The path of the satellite in the orbital plane is shown in Figure 2.6. The lengths a and b
of the semimajor and semiminor axes are given by

a=p/(l —é)
b =a(l — &)

(2.18)
(2.19)

The point in the orbit where the satellite is closest to the earth is called the perigee
and the point where the satellite is farthest from the earth is called the apogee. The perigee
and apogee are always exactly oppo~‘te each other. To make 6, equal to zero, we have
chosen the x, axis so that both the apogee and the perigee lie along it and the x, axis is

therefore the major axis of the ellipse.

The differential area swept out by the vector ry from the origin to the satellite in

time dt is given by

dA = o.srg(-—_)dz = 0.5hd:

) (2.20)

dt

Remembering that 4 is the magnitude of the orbital angular momentum of the satellite,
the radius vector of the satellite can be seen to sweep out'equal areas in equal times. This
is Kepler’s second law of planetary motion. By equating the area of the ellipse (wrab) to
the area swept out in one orbital revolution, we can derive an expression for the orbital

period T as

T2

= (4m’a’)/p

2.21)
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FIGURE 2.6 The orbit as it appears in the orbital plane. The point O is the center of
the earth and the point C is the center of the ellipse. The two centers do not coincide
unless the eccentricity, e, of the ellipse is zero (i.e., the ellipse becomes a circle and

& = b). The dimensions a and b are the semimajor and semiminor axes of the orbitaj
ellipse, respectively.

This equation is the mathematical expression of Kepler’s third law of Planetary mo.
tion: the square of the period of revolution is proportional to the cube of the semimajor
axis. (Note that this is the square of Eq. (2.6) and that in Eq. (2.6) the orbit was assumeq
to be circular such that semimajor axis a = semiminor axis p = circular orbit radius
from the center of the earth r.) Kepler's third law extends the result from Egq. (2.6), which
was derived for a circular orbit, to the more general case of an elliptical orbit. Equa-
tion (2.21) is extremely important in satellite communications systems. This equation
determines the period of the orbit of any satellite, and it is used in every GPS receiver
in the calculation of the positions of GPS satellites. Equation (2.21) is also used to find
the orbital radius of a GEO satellite, for which the period T must be made exactly equa
to the period of one revolution of the earth for the satellite to remain stationary over :
point on the equator.

An important point to remember is that the period of revolution, 7, is referenced
inertial space, namely, to the galactic background. The orbital period is the time the or
biting body takes to return to the same reference point in space with respect to the gala-
tic background. Nearly always, the primary body will also be rotating and so the Pffi‘?‘g
of revolution of the satellite may be different from that perceived by an observer who &
standing still on the surface of the primary body. This is most obvious with a geostatior
ary earth orbit (GEO) satellite (see Table 2.1). The orbital period of a GEO satellite is &
actly equal to the period of rotation of the earth, 23 h 56 min 4.1 s, but, to an observel

on the ground, the satellite appears to have an infinite orbital period: it always stays in
the same place in the sky.



To be perfectly geostationary, the orbit of a satellite needs to ha\{e three features:
(a) it must be exactly circular (i.e., have an eccentricity of zero); (b) it must be at the
correct altitude (i.e., have the correct period); and (c) it must be in the plane of the equa-
tor (i.e., have a zero inclination with respect to the equator). If the inclination of the
satellite is not zero and/or if the eccentricity is not zero, but the orbital period is cor-
rect, then the satellite will be in a geosynchronous orbit. The position of a geosynchro-
nous satellite will appear to oscillate about a mean look angle in the sky with respect
to a stationary observer on the earth’s surface. The orbital period of a GEO satellite,
23 h 56 min 4.1 s, is one sidereal day. A sidereal day is the time between consecutive
crossings of any particular longitude on the earth by any star, other than the sun'. The
mean solar day of 24 h is the time between any consecutive crossings of any particular
longitude by the sun, and is the time between successive sunrises (or sunsets) observed
at one location on earth, averaged over an entire year. Because the earth moves round

the sun once per 365 % days, the solar day is 1440/365.25 = 3.94 min longer than a
sidereal day.

Locating the Satellite in the Orbit

"~ Consider now the problem of locating the satellite in its orbit. The equation of the orbit
may be rewritten by combining Eqs. (2.15) and (2.18) to obtain

a(l — &%)

P e 2:22
£ 1 + ecos ¢, 28

The angle ¢, (see Figure 2.6) is measured from the x, axis and is called the true anom-
aly. [Anomaly was a measure used by astronomers to mean a Planet’s angular distance
from its perihelion (closest approach to the sun), measured as if viewed from the sun. The
term was adopted in celestial mechanics for al orbiting bodies.] Since we defined the pos-
itive x, axis so that it passes through the perigee, ¢, measures the angle from the perigee

to the instantaneous position of the satellite. The rectangular coordinates of the satellite
are given by

Xo = 1y Ccos ¢, _ (2.23)
Yo = rg sin ¢, (2.24)

As noted earlier, the orbital period T is the time for the satellite.to complete a rev-

olution in inertial space, traveling a total of 27 radians. The average angular velocity 7
is thus

n = (2m)/T = (u')/(a*?) - @225)

If the orbit is an ellipse, the instantaneous angular velocity will vary with the position of
the satellite around the orbit. If we enclose the elliptical orbit with a circumscribed cir-
cle of radius q (see Figure 2.7), then an object going around the circumscribed circle with
a constant angular velocity 1 would complete one revolution in exactly the same period
T as the satellite requires to complete one (elliptical) orbital revolution.

Consider the geometry of the circumscribed circle as shown ‘in Figure 2.7. Locate
the point (indicated as A) where a vertical line drawn through the position of the satellite
intersects the circumscribed circle. A line from the center of the ellipse (C) to this point
(A) makes an angle E with the Xo axis; E is called the eccentric anomaly of the satellite.



> X, axis

Circumscribed Circle
FIGURE 2.7 The circumscribed circle and the eccentric anomaly E. Point O is the center of
the earth and point C is both the center of the orbital ellipse and the center of the circum-
scribed circle. The satellite location in the orbital plane coordinate system is specified by (x,,
¥o). A vertical line through the satellite intersects the circumscribed circle at point A. The
eccentric anomaly E is the angle from the x; axis to the line joining C and A.

It 1s related to the radius ry by

ro = a(l — ecosE) (2.26)
Thus
a — ry = aecosE (2.27)

We can also develop an expression that relates eccentric anomaly E to the average
angular velocity 7, which yields

ndt = (1 — ecosE)dE (2.28)

Let t, be the time of perigee. This is simultaneously the time of closest approach to the

earth; the time when the satellite is crossing the x; axis; and the time when E is zero. I
we integrate both sides of Eq. (2.28), we obtain

n(t —t,) = E — esinE 229
The left side of Eq. (2.29) is called the mean anomaly, M. Thus
M =n(t—1t)=E— esinE (230

The mean anomaly M is the arc length (in radians) that the satellite would have traversed |
since the perigee passage if it were moving on the circumscribed circle at the mean 2%
gular velocity 7. 8

If we know the time of perigee, #,, the eccentricity, e, and the length of the se® |
major axis, a, we now have the necessary equations to determine the coordinates (7o %



and (xo, yo) of the satellite in the orbital plane. The process is as follows

1. Calculate 7 using Eq. (2.25).

2. Calculate M using Eq. (2.30).

3. Solve Eq. (2.30) for E.

4. Find ry from E using Eq. (2.27).

5. Solve Eq. (2.22) for ¢,

6. Use Eqgs. (2.23) and (2.24) to calculate Xy and yj,.

Now we must locate the orbital plane with respect to the earth.

Locating the Satellite with Respect
to the Earth

At the.end of the last section, we summarized the process for locating the satellite at
the. point (xo, ¥y, Zo) in the rectangular coordinate system of the orbital plane. The lo-
cation was with respect to the center of the earth. In most cases, we need to know
where the satellite is from an observation point that is not at the center of the earth.
We will therefore develop the transformations that permit the satellite to be located
from a point on the rotating surface of the earth. We will begin with a geocentric equa-
torial coordinate system as shown in Figure 2.8. The rotational axis of the earth is the
z; axis, which is through the geographic North Pole. The x; axis is from the center of
the earth toward a fixed location in space called the first point of Aries (see Figure 2.8).
This coordinate system moves through space; it translates as the earth moves in its or-
bit around the sun, but it does not rotate as the earth rotates. The x; direction is always
the same, whatever the earth’s position around the sun and is in the direction of the
first point of Aries. The (x,, y,) plane contains the earth’s equator and is called the
equatorial plane.

Angular distance measured eastward in the equatorial plane from the X; axis is
called right ascension and given the symbol RA. The two points at which the orbit

FIGURE 2.8 The geocentric
equatorial system. This geocentric
systemn differs from that shown in
Figure 2.1 only in that the x; axis
points to the first point of Aries.
The first point of Aries is the di-
rection of a line from the center
of the earth through the center of
the sun at the vernal equinox
(about March 21 in the Northern
Hemisphere), the instant when
the subsolar point crosses the
equator from south to north. In
the above system, an object may
be located by its right ascension
RA and its declination é.
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FIGURE 2.9 Locating the orbit in the geocentric equatorial system. The satellite penetraté’
the equatorial plane (while moving in the positive z direction) at the ascending node. The
right ascension of the ascending node is £} and the inclination i is thfa angle between t:n:a
equatorial plane and the orbital plane. Angle w, measured in the orbital plane, locates
perigee with respect to the equatorial plane.




second for the third millenium A.b=is given by Julian date 245 1?09.5‘ To find the
exact position of an orbiting satellite at a given instant in time requires knowledge of
the orbital elements.

Orbital Elements

To specify the absolute (i.e., the inertinl) coordinates of a satellite at time f, we need to
know six quantities. (This was evident earlier when we determined that a satellite's equa-
tion of motion was a second order vector linear differential equation.) These quantities
are called the orbital elements. More than six quantities can be used to describe a unique
orbital path and there is some arbitrariness in exactly which six quantities are used. We
have chosen to adopt a set that is commonly used in satellite communications: eccentric-
ity (€), semimajor axis (a), time of perigee (1,), right ascension of ascending node (£2),

inclination (i), and argument of perigee (w). Frequently, the mean anomaly (M) at a given
time is substituted for 1,

EXAMPLE 2.1.1 Geostationary Satellite Orbit Radius
The earth rotates once per sidereal day of 23 h 56 min 4.09 s. Use Eq. (2.21) to show that the radius
of the GEO is 42,164.17 km as given in Table 2.1,
Answer Equation (2.21) gives the square of the orbital period in seconds
1? = (4r'a')/p
Rearranging the equation, the orbital radius a is given by
a' = T’u/(47?)
For one sidereal day, T = 86,164.09 s. Hence

a' = (86,164.1)* X 3.986004418 X 10*/(47%) = 7.496020251 X 10" km’
a = 42,164.17 km

This is the orbital radius for a geostationary satellite, as given in Table 2.1. [ |

EXAMPLE 2.1.2 Low Earth Orbit

The Space Shuttle is an example of a low earth orbit satellite. Sometimes, it orbits at an altitude of
250 km above the earth's surface, where there is still a finite number of molecules from the at-
mosphere. The mean earth’s radius is approximately 6378.14 km. Using these figures, calculate the
period of the shuttle orbit when the altitude is 250 km and the orbit is circular. Find also the linear
velocity of the shuttle along its orbit.

Answer The radius of the 250-km altitude Space Shuttle orbit is (r. + h) = 6378.14 + 250.0 =
6628.14 km

From Eq. 2.21, the period of the orbit is 7 where

T = (4ma")/u = 4w X (6628.14)'/3.986004418 X 10° §°
= 2.88401145 X 107 §?

H#nce the period of the orbit is

T = 537030 s = 89 min 30.3 s.



This orbit period is about as small as possible. At a lower altitude, friction with the earth’s atmgg_
phere will quickly slow the Shuttle down and it will return to earth. Thus, all Spacecraft in stah),
carth orbit have orbital periods exceeding 89 min 30 s.

The circumference of the orbit is 27ra = 41,645.83 km.
Hence the velocity of the Shuttle in orbit is

2ma/T = 41,645.83/5370.13 = 7.755 km/s

Alternatively, you could use Eq. (2.5): v = (u/r)"2. The term p = 3.986004418 X 10° km’/s? ang
the term r = (6378.14 + 250.0) km, yielding v = 7.755 km/s.

Note: If u and r had been quoted in units of m%/s? and m, respectively, the answer would have beep
in meters/second. Be sure to keep the units the same during a calculation procedure.

A velocity of about 7.8 kmy/s is a typical velocity -for a low earth orbit satellite. As the alti-
tude of a satellite increases, its velocity becomes smaller, ]

EXAMPLE 2.1.3 Elliptical orbit

A satellite is in an elliptical orbit with a perigee of 1000 km and an apogee of 4000 km. Using a

mean earth radius of 6378.14 km, find the period of the orbit in hours, minutes, and seconds, and
the eccentricity of the orbit.

Answer The major axis of the elliptical orbit is a straight line between the apogee and perigee,
as seen in Figure 2.7. Hence, for a semimajor axis length g, earth radius r,, perigee height A, and
apogee height h,,

2a =2r, + h, + h, = 2 X 6378.14 + 1000.0 + 4000.0 = 17,756.28 km

Thus the semimajor axis of the orbit has a length @ = 8878.14 km. Using this value of ¢ in Eq. (2.21)
gives an orbital period T seconds where

T? = (47%a%)/u = 4m* X (8878.07)%/3.986004418 X 10° s
= 6.930872802 X 10 s2
T = 8325.1864s = 138 min45.19s = 2h 18 min 45.19 s

The eccentricity of the orbit is given by e, which can be found from Eq. (2.27) by cqns%der—
ing the instant at which the satellite is at perigee. Referring to Figure 2.7, when the satellite is at
perigee, the eccentric anomaly E = 0 and 7y = r, + h,. From Eq. (2.27), at perigee

ro=a(l — ecosE) and cosE =1
Hence

e=1~—(r.+ h)/a=1-1737814/8878.14 = 0.169




