5.4. DIVERGENCE OF MAGNETIC INDUCTION, B

A current element Idl at a source point P’(x’, y’, z’) produces an element of magneti
dB

induction dB at a field point P(x, y, z). According to Biot and
Savart law,

Ho Idlxr
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We write, according to Biot and Savart law, that for
entire current loop

dB =

g} ol 35 dlxr
4n r Fig. 13. Source point, P’ and field point
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where B is the magnetic induction at the field P(x, y, z) and the element of conductor dl carrying
current I is at a source point P'(x’, y’, 2°).

The deri_vatives in the divergence operator are calculated at the field point, the differentiation
and integration operations are interchangeable, we write eq. (1) as
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Further
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But we find that
_)
VxdI=0,

because dlis not a function of coordinates (x, y, z)of field point P where we are to find E’) .B. Also,

_V)x—r_.—-—?xf’)[}) = 0,
rd r
because the curl of a gradient is always zero. Therefore eq. (2) becomes

V.B=0 .3
that is, divergence of the magnetic induction B is always zero. This implies that
o= ¢ B.dS

-] (V.B)dV’

=0,
the net flux of magnetic induction through any closed surface is always zero.

B 5.5 THE MAGNETIC VECTOR POTENTIAL, A
We know that electrostatic field intensity E can be drived from the potential V by the relation

E= —? V. Likewise we shall show that magnetic induction B can also be related to a quantity A by

the relation B = Vx A . where A, by analogy, is called magnetic vector potential.
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Refer to fig. 13. We write the magnetic induction
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involving coordinates of field point P(x,y, z). Then we write

. POI§ dlx'v’( )

”OIj v( )x dl. i
We know that .
Vx(pQ) = p (VX Q—-(Qx Vp)
(Vpx@ = Vx(pQ-p (Vx Q)

Putting dl for Q and [ ) for p, we write

v (l]x dl=V x (il)—l (E’)xdl),
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so that equation (1) 1s
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But V xdl=0,
because d! is not the function of field point coordinates (x, ¥, 2). Thus
ol ¢ [e’ xi’) 0
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Interchanging the operations, we get

4n r
=—V’X (.M_OI_§ .Ei_l)
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=VxA, e
where A= "01§ al
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called the vector potential. Thus ma agnetic induction is given by the curl of vector potential. If the
current is distributed with a current density J so that

I=JdS,
we get on putting dSdl = dV’ and integrating over the whole volume,
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i 5.6. THE DIVERGENCE OF MAGNETIC VECTOR POTENTIAL, A : THE LORENTZ
CONDITION
We shall calculate
Jdv’

V.ambog 4V )
where A is evaluated at the field pomt P(x, y, z) and volume element dV’ is situated at source
_... .
point P’'(x’, ', 2’,) fig. 14. Since V involves derivative of field Al ¥
point (x, ¥, z), we can change the operations in eq. (1). That is
A= Ho J dv’ d
VAL ], V.
[j , 1¥. pav +j J. V[ ]dV]
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Since J is current density at the source point P’, therefore it will
: iving then
not be a function of x, y, 2 gl:mg Fig. 14. A Is to be evaluated at field
V.d=0 point P, J is current density at
N source point P’ and p is charge
o ’ density, dV’ Is the volume element
V.A= .[V J. V( )dV +(2) at source point P’

Setting the gradient at the source point to be V’ (—
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Changing with the help of divergence theorem, we put
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where S is the surface enclosing volume V’, within which current J is confined.

We write then

4n r

Everywhere on the surface S, which encloses the volume V", J is either zero or tangential so
that

6.A=-H_q(js Jas- ], 1@’.@&/’]

J.dS =0,
in both the cases. Therefore
= IJvO 1 _)' ’
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From the equation of continuity,
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so that equation (3) becomes
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where V"’ is any volume within which the current J is confined. Refer to chapter 1, from where we
can write the potential ¢, produced by a continuous charge distribution, as
1 dv’
o=—o] , F
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Using above relation, equation (4) can be written as
—
V. A= _uOEO% ...(5)

which is called Lorentz condition for the vector potential A associated with the magnetic field B
due to non-steady currents.

If ¢ is constant, then from eq. (5), we have

- 6)
V.A=0. sl
This is the Lorentz condition for vector potential associated with steady currents.



